On the OA(1536,13,2,7) and related orthogonal arrays
نویسندگان
چکیده
منابع مشابه
the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology
abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...
15 صفحه اولOn the decomposition of orthogonal arrays∗
When an orthogonal array is projected on a small number of factors, as is done in screening experiments, the question of interest is the structure of the projected design, by which we mean its decomposition in terms of smaller arrays of the same strength. In this paper we investigate the decomposition of arrays of strength t having t + 1 factors. The decomposition problem is well-understood for...
متن کاملOn the construction of nested orthogonal arrays
Nested orthogonal arrays are useful in obtaining space-filling designs for an experimental set up consisting of two experiments, the expensive one of higher accuracy to be nested in a larger inexpensive one of lower accuracy. Systematic construction methods of some families of symmetric and asymmetric nested orthogonal arrays were provided recently by Dey [Discrete Math. 310 (2010), 2831–2834]....
متن کاملOn the existence of nested orthogonal arrays
A nested orthogonal array is an OA(N, k, s, g)which contains an OA(M, k, r, g) as a subarray. Here r < s andM<N . Necessary conditions for the existence of such arrays are obtained in the form of upper bounds on k, given N,M, s, r and g. Examples are given to show that these bounds are quite powerful in proving nonexistence. The link with incomplete orthogonal arrays is also indicated. © 2007 E...
متن کاملOn the Construction of Asymmetric Orthogonal Arrays
A general method for constructing asymmetric orthogonal arrays of arbitrary strength is proposed. Application of this method is made to obtain several new families of tight asymmetric orthogonal arrays of strength three. A procedure for replacing a column with 2 symbols in an orthogonal array of strength three by several 2-symbol columns, without disturbing the orthogonality of the array, leads...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2020
ISSN: 0012-365X
DOI: 10.1016/j.disc.2019.111659